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Single-cell transcriptome profiling (scRNA-seq) is an important 
technique to study cellular heterogeneity

Credit: Manolis Kellis, MIT



Analysis of scRNA-seq data often involves manifold embedding

Individual Cell mixture Cell expression Cell manifold

What are the genes 
differentiating cell types?



Caveats of conventional scRNA-seq differentiation analysis 
workflow
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Caveats: 
❏ The uncertainty induced by the nonlinear embedding is ignored
❏ The stochasticity in cluster assignments is ignored
❏ The dependency among genes is ignored
❏ Only genes enriched in single clusters are highlighted as the signature



Adversarial Clustering Explanation (ACE) overcomes limitations 
of existing methods
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Love et al, Genome Biology (2014)

Cao et al, Nature (2019)

Plumb et al, ICML (2020)

Angerer et al, Bioinformatics (2020)



ACE aims to jointly explain the embedding and clustering

6



ACE takes as input the expression matrix and a pre-specified 
number of clusters
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Input:

❏ The scRNA-seq expression matrix
❏ The specified cluster number k
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ACE projects the expression data into a low-dimensional 
embedding using a deep autoencoder

Embedding by Autoencoder:

❏ Dimension reduction similar to 
UMAP, t-SNE, or PCA

❏ Batch correction 

❏ Applicable to any scRNA-seq 
embedding method

Amodio et al, Nature Methods (2019)
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ACE  performs k-means clustering in the learned 
embedding space
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❏ K-means clustering in the 
embedding space
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ACE reformulates the k-means clustering as a functionally 
equivalent multi-layer neural network
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Cluster neuralization:

❏ The cluster assignment is 
preserved for each cell

Cluster C: 
0.05 

Cluster B: 0.1 

Cluster A: 0.85 

Kauffmann et al, arXiv:1906.07633 (2019)
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ACE finds the minimal perturbation to a cell that causes the 
clustering assignment to change

Cluster C: 0. 51 

Cluster B: 0.1 

Cluster B: 0.39

Perturbationlow high Assignment changed!

The assignment changes are propagated back to the perturbation
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Sanity check: we applied ACE to identify digit transitions in 
a pixel-wise manner
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Deng L., IEEE Signal Processing Magazine (2012)



ACE is applied to a simulated dataset with many redundant genes

14Task: Rank the genes by relevance

Metric: Quantify how well the top k genes
in the ranking capture the clustering

Dependent genes are weighted sums of 
random causal genes with noises:
Dep1 = w1causal1 + w2causal3
Dep2 = w1causal2 + w2causal4 + w3causal6 

Dep3 = w1causal10

... 

Both causal and noise genes are simulated 
for 500 cells by using SymSim toolkit.

Zhang et al, Nature Communications (2019)



The Mean Jaccard Distance is a metric for how well a 
subset of features capture the cluster structure

Clustering is explained 
better

Clustering is explained 
less

Taken from the gene ranking



ACE is competitive against existing methods
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ACE is applied to a real melanoma dataset 

2 cell types (malignant vs. non-malignant)
4513 cells (1257 malignant and 3256 non-malignant)
23686 genes

Tiroshi et al, Science (2016)

Task: Rank the genes by relevance

Metric: 
❏ Quantify how well the top k genes in ranking 

discriminate malignant cells
❏ Quantify how non-redundant/diverse are the 

top k genes in the ranking



Ideally we want the selected top-ranked genes to be both 
highly discriminative and non-redundant

Taken from the gene ranking

Selected genes are 
more discriminative

Selected genes are 
less discriminative

Selected genes are 
more correlated

Selected genes are 
less correlated

Taken from the gene ranking



ACE is competitive against existing methods in both 
discriminative power and minimum redundancy
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Conclusions

❏ ACE finds the minimal set of genes that best explain clustering and is competitive 
against existing methods.

❏ The selected highly-discriminative genes can be both enriched and depleted.

❏ ACE is potentially useful in domains beyond biology.

❏ Open-source code availability: https://bitbucket.org/noblelab/ace
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