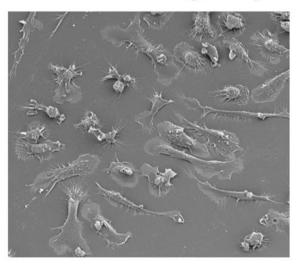


ACE: Explaining cluster from an adversarial perspective

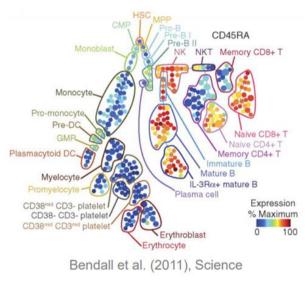
Yang Lu, Timothy Yu, Giancarlo Bonora, William Stafford Noble

Single-cell transcriptome profiling (scRNA-seq) is an important technique to study cellular heterogeneity

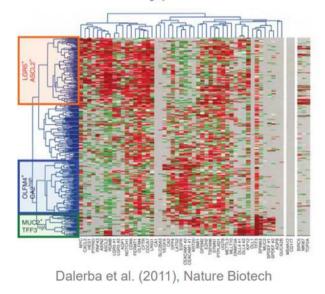
Cellular heterogeneity



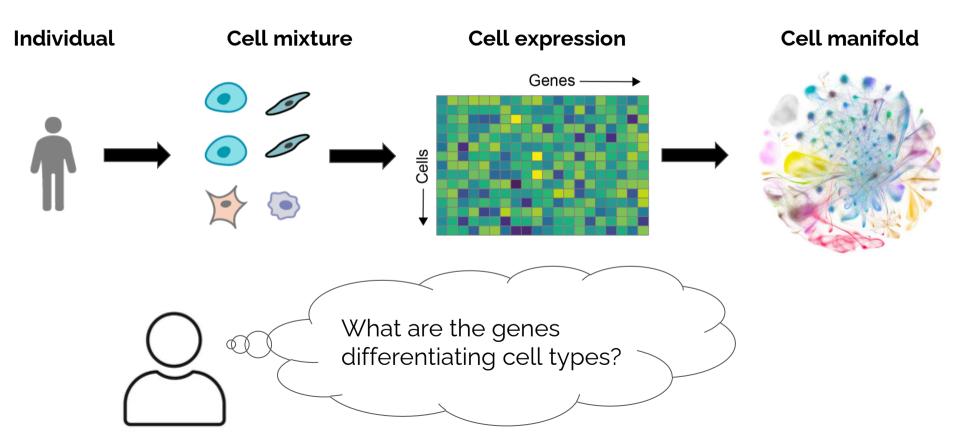
Differentiation trajectories



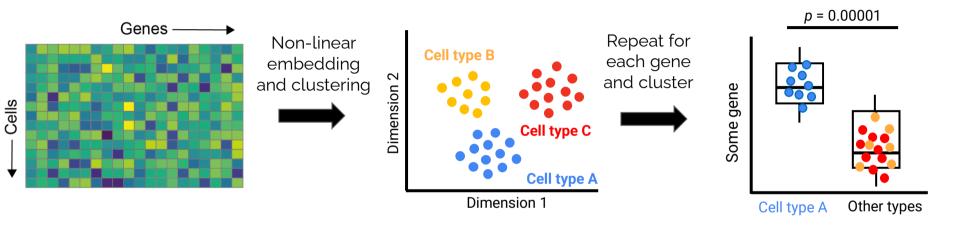
Within-cell-type differences



Analysis of scRNA-seq data often involves manifold embedding



Caveats of conventional scRNA-seq differentiation analysis workflow



Caveats:

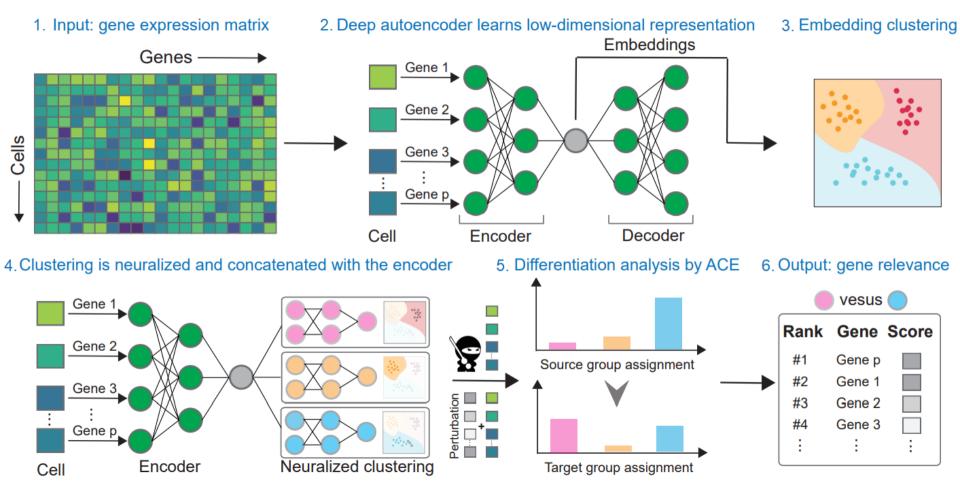
- □ The uncertainty induced by the nonlinear embedding is ignored
- □ The **stochasticity in cluster assignments** is ignored
- The dependency among genes is ignored
- Only genes enriched in single clusters are highlighted as the signature

Adversarial Clustering Explanation (ACE) overcomes limitations of existing methods

	ACE	DESeq2	Jensen-Shannon Distance (Monocle 3)	Global Counterfactual Explanation	Gene Relevance Score
Dependency among genes	\checkmark	×	×	\checkmark	\checkmark
Uncertainty by the nonlinear embedding	\checkmark	×	×	×	\checkmark
Stochasticity in cluster assignments	\checkmark	×	×	×	×
Does not limit to enriched genes	\checkmark	×	×	\checkmark	\checkmark
Additional limitations	NA	NA	NA	Limited to linear transformation	Limited to diffusion maps

Love et al, Genome Biology (2014) Cao et al, Nature (2019) Plumb et al, ICML (2020) Angerer et al, Bioinformatics (2020)

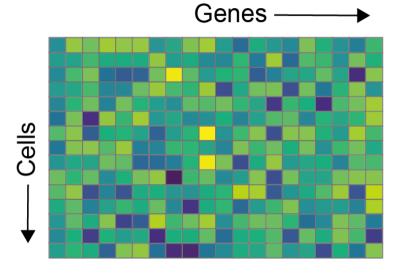
ACE aims to jointly explain the embedding and clustering

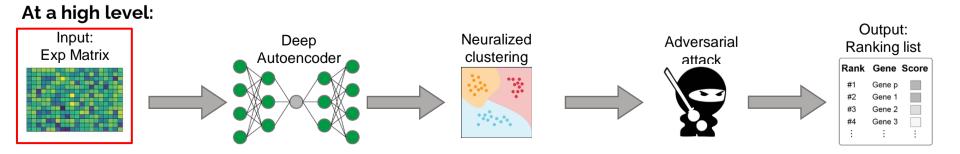


ACE takes as input the expression matrix and a pre-specified number of clusters

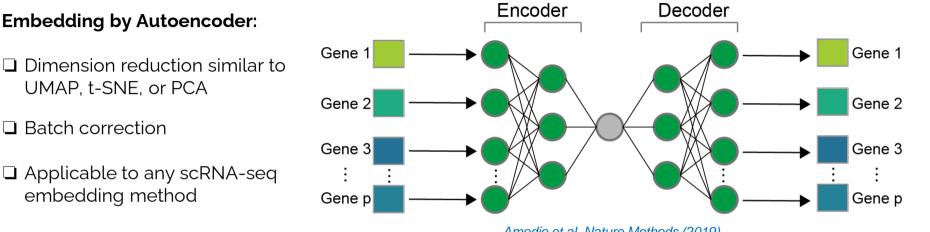
Input:

The scRNA-seq expression matrix
The specified cluster number k

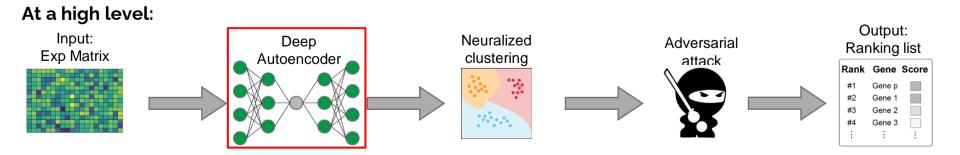




ACE projects the expression data into a low-dimensional embedding using a deep autoencoder

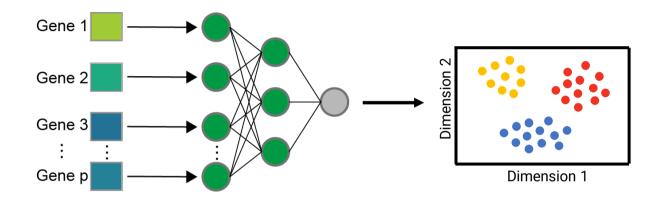


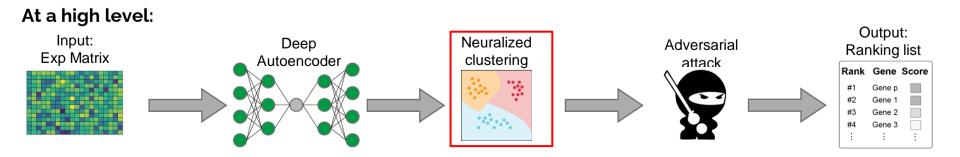
Amodio et al, Nature Methods (2019)



ACE performs k-means clustering in the learned embedding space

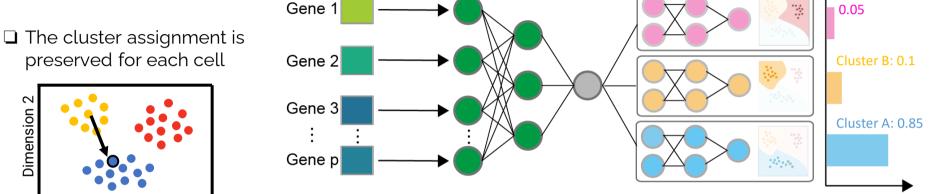
□ K-means clustering in the embedding space





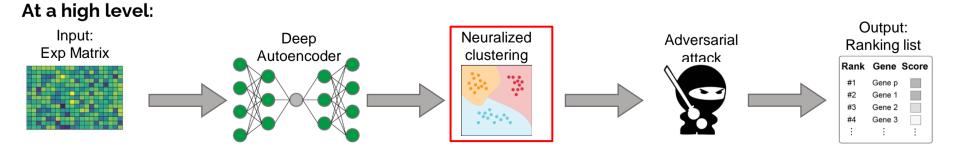
ACE reformulates the k-means clustering as a functionally equivalent multi-layer neural network

Dimension 1

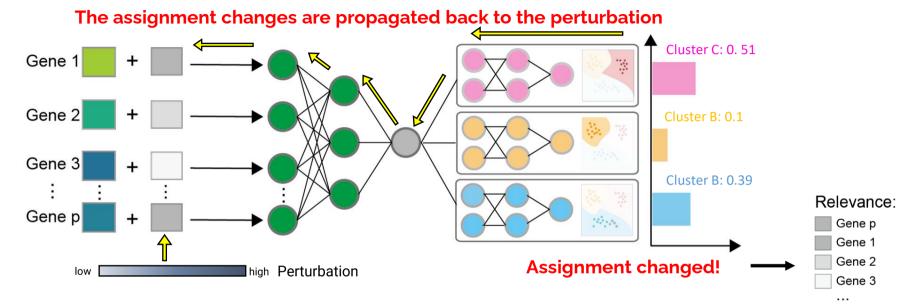


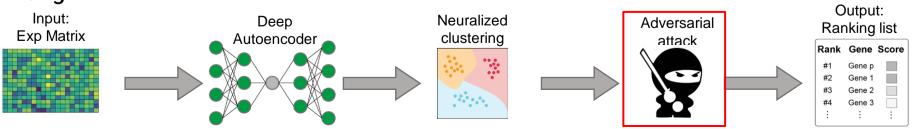
Kauffmann et al, arXiv:1906.07633 (2019)

Cluster C:

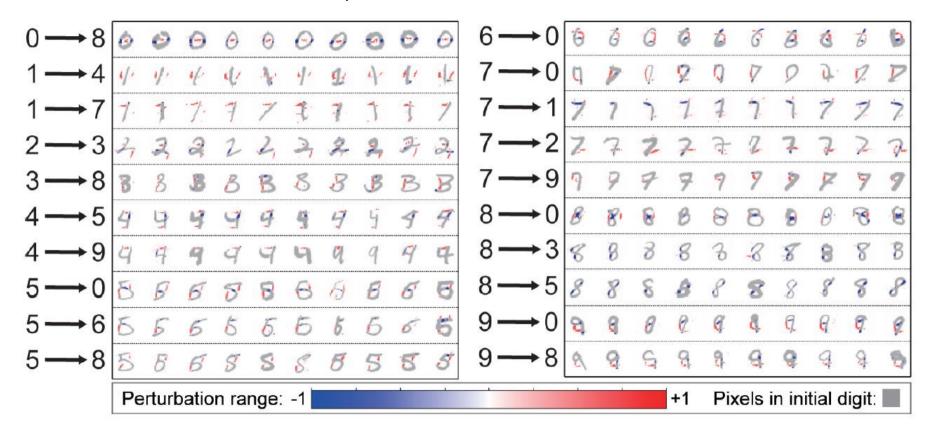


ACE finds the **minimal perturbation** to a cell that causes the clustering assignment to change



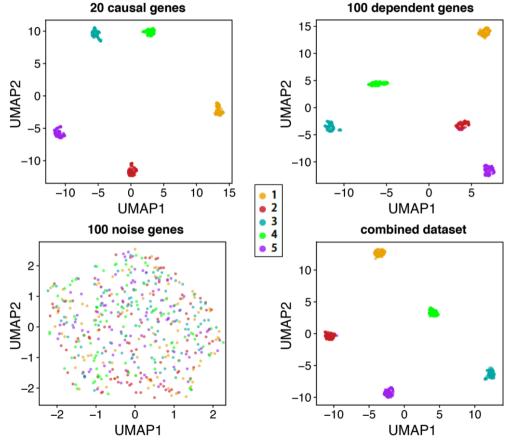


Sanity check: we applied ACE to identify digit transitions in a pixel-wise manner



Deng L., IEEE Signal Processing Magazine (2012)

ACE is applied to a simulated dataset with many redundant genes



Both causal and noise genes are simulated for 500 cells by using **SymSim** toolkit.

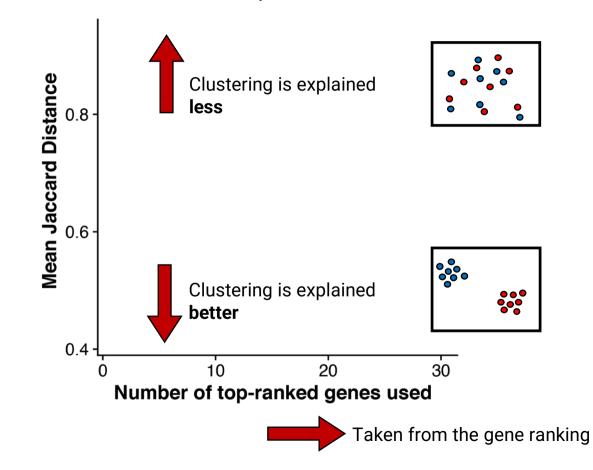
Dependent genes are weighted sums of random causal genes with noises:

 $\begin{aligned} \mathsf{Dep}_1 &= w_1 \mathsf{causal}_1 + w_2 \mathsf{causal}_3 \\ \mathsf{Dep}_2 &= w_1 \mathsf{causal}_2 + w_2 \mathsf{causal}_4 + w_3 \mathsf{causal}_6 \\ \mathsf{Dep}_3 &= w_1 \mathsf{causal}_{10} \end{aligned}$

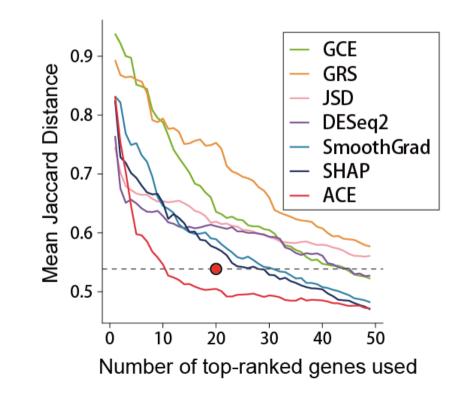
•••

Task: Rank the genes by relevance**Metric:** Quantify how well the top k genesin the ranking capture the clustering

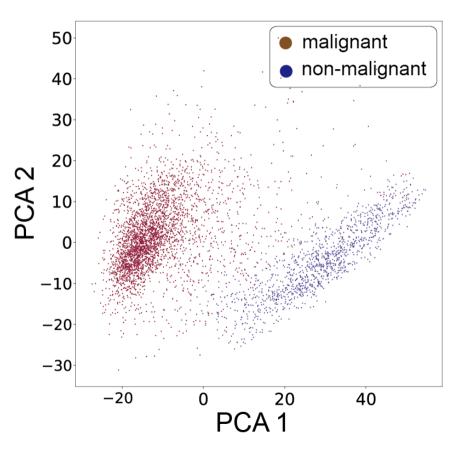
The **Mean Jaccard Distance** is a metric for how well a subset of features capture the cluster structure



ACE is **competitive** against existing methods



ACE is applied to a real melanoma dataset



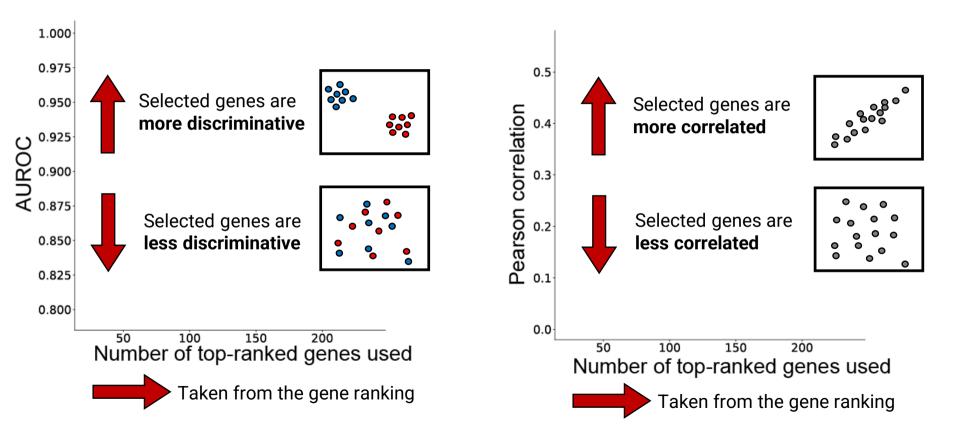
2 cell types (malignant vs. non-malignant) 4513 cells (1257 malignant and 3256 non-malignant) 23686 genes

Task: Rank the genes by relevance

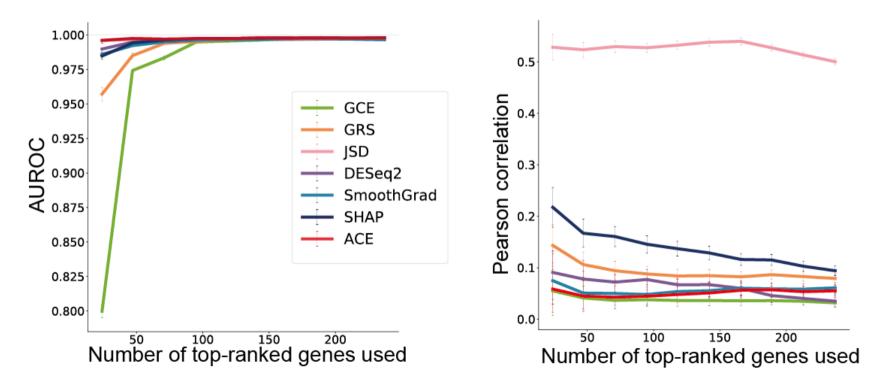
Metric:

- Quantify how well the top k genes in ranking discriminate malignant cells
- □ Quantify how non-redundant/diverse are the top *k* genes in the ranking

Ideally we want the selected top-ranked genes to be both highly discriminative and non-redundant

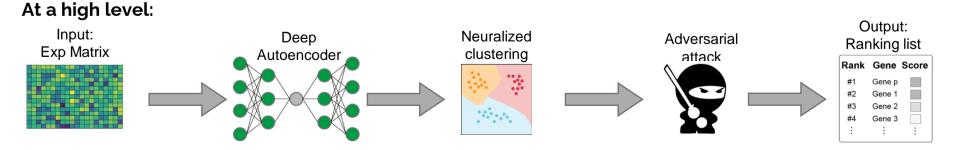


ACE is **competitive** against existing methods in both discriminative power and minimum redundancy



Conclusions

- □ ACE finds the minimal set of genes that best explain clustering and is competitive against existing methods.
- □ The selected highly-discriminative genes can be both enriched and depleted.
- ACE is potentially useful in domains beyond biology.
- Open-source code availability: <u>https://bitbucket.org/noblelab/ace</u>



Acknowledgements

•Noble lab members:

W UNIVERSITY of WASHINGTON