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The advent of next-generation sequencing (NGS) technologies
enables researchers to sequence complex microbial communities
directly from environment. Since assembly typically produces
only genome fragments, also known as contigs, instead of entire
genome, it is crucial to group them into operational taxonomic
units (OTUs) for further taxonomic profiling and down-streaming
functional analysis. OTU clustering is also referred to as binning.

We present COCACOLA, a general framework automatically bin
contigs into OTUs based upon sequence composition and coverage
across multiple samples. The effectiveness of COCACOLA is
demonstrated in both simulated and real datasets in comparison to
state-of-art binning approaches such as CONCOCT [1], GroopM [3]
and MetaBAT [4]. The superior performance of COCACOLA relies
on two aspects. One is employing L1 distance instead of Euclidean
distance for better taxonomic identification during initialization.
More importantly, COCACOLA takes advantage of both hard
clustering and soft clustering by sparsity regularization.

In addition, the COCACOLA framework seamlessly embraces
customized prior knowledge to facilitate binning accuracy. In our
study, we have investigated two types of additional knowledge,
in particular, the co-alignment to reference genomes and linkage
of contigs provided by paired-end reads. We find that both co-
alignment and linkage information further improve binning in
the majority of cases. COCACOLA is scalable and in parallel, the
running time on binning is faster than MetaBAT and much faster
than CONCOCT and GroopM.

Software: https://github.com/younglululu/COCACOLA

Abstract

There are two possible types of feature:

• Abundance Profile

• Composition Profile (tetra-mer)

Feature Matrix Representation of Contigs

According to above illustration, given a feature matrix X , we want
to find two matrices W and H satisfying:

X ≈ WH

s.t. W ≥ 0, H ∈ {0, 1}K×N , ‖H·n‖0 = 1 for n = 1, 2, · · · , N
The matrices W and H are obtained by minimizing a certain objec-
tive function. We use Frobenius norm, commonly known as the sum
of squared error:

arg min
W,H
‖X −WH‖2F (1)

s.t. W ≥ 0, H ∈ {0, 1}K×N , ‖H·n‖0 = 1 for n = 1, 2, · · · , N
Eq. (1) is NP-hard to solve. We relax the binary constraint of Hwith
numerical values. Hence Eq. (1) is reformulated as the following
minimization problem:

arg min
W,H≥0

‖X −WH‖2F (2)

Relaxation of binary constraint makes the interpretation from hard
clustering to soft clustering, where hard clustering means that a con-
tig can only be assigned to one OTU, while soft clustering allows a
contig to be assigned to multiple OTUs. It has been observed that
by imposing sparsity on each column of H , the hard clustering be-
havior can be facilitated [7]. Therefore, Eq. (2) is further modified
through the Sparse Nonnegative Matrix Factorization (SNMF) form
[7]:

arg min
W,H≥0

‖X −WH‖2F + α

N∑
n=1

‖H·n‖21 (3)

Problem Formulation

We consider two possible additional information, which is encoded in
laplacian matrix L:

• paired-end reads linkage

• co-alignment to reference genomes

By incorporating the regularization item of additional information, the
objective function changes to the following form:

arg min
W,H≥0

‖X −WH‖2F + α
N∑
n=1

‖H·n‖21 + β Tr(HLHT ) (4)

Additional Information (optional)

We use Alternating Nonnegative Least Squares (ANLS) [5, 7, 8] to
solve Eq. (4), iteratively handle two nonnegative least square (NNLS)
subproblems in Eq. (5) until convergence.

H ← arg min
H≥0
‖X −WH‖2F + α

N∑
n=1

‖H·n‖21 + β Tr(HLHT ) (5a)

W ← arg min
W≥0

∥∥∥XT −HTWT
∥∥∥2
F

(5b)

By using block coordinate descent (BCD) [6], Eq. (5a) can be further
reorganized into:

arg min
H≥0

∥∥∥∥∥∥
 X

01×N√
βHoldA

−
 W√

αe1×K√
βIK

H

∥∥∥∥∥∥
2

F

(6)

Optimization
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(a) simulated species dataset (b) simulated strain dataset

The simulated species dataset consisted of 101 different species across
96 samples. A total of 37,628 contigs remain for binning after co-
assembly and filtering.
The simulated strain dataset consisted of 20 different species or strains
from the same species across 64 samples, including five different E.
coli strains, five different Bacteroides species, five different species from
different Clostridium genera, and five different gut bacteria. A total of
9,417 contigs remain for binning after co-assembly and filtering.

Performance on Simulated Datasets
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(a) real Sharon dataset (b) real MetaHIT dataset

We use a time-series study of 11 fecal microbiome samples from a
premature infant [10], denoted as the Sharon dataset. Since the true
species that contigs belong to are not known, we assign the class label-
s by annotating contigs using the TAXAassign script [2]. As a result,
2, 614 out of 5, 579 contigs are unambiguously labeled on the species
level for evaluation. Another real dataset embody 264 samples from
the MetaHIT consortium [9] (SRA:ERP000108), the same dataset used
in MetaBAT [4], denoted as the MetaHIT dataset. 17, 136 out of 192, 673
co-assembled contigs are unambiguously labeled on the species level
for evaluation.

Performance on Real Datasets
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(a) Precision of linkage (d) Precision of co-alignment
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(b) Recall of linkage (e) Recall of co-alignment
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(c) ARI of linkage (f) ARI of co-alignment

The simulated species dataset comprises 96 samples overall. Thus
we choose sub-samples of size ranging from 10 to 90, with 10 as in-
crement. To avoid duplicate contribution from a particular sample,
we choose sub-samples without overlapping. Therefore, the num-
bers of sub-samples are 9, 4, 3, 2, 1, 1, 1, 1, 1, respectively.
We compare the binning result by COCACOLA incorporating ad-
ditional information against the result without additional informa-
tion. When the sample size exceedsK = 30, the regularization effect
nearly diminishes, therefore we focus on the 16 cases from K = 10
to K = 30.

The Effect of Additional Information

[1] J. Alneberg, B. S. Bjarnason, I. de Bruijn, M. Schirmer, J. Quick, U. Z. Ijaz,
L. Lahti, N. J. Loman, A. F. Andersson, and C. Quince. Binning metagenom-
ic contigs by coverage and composition. Nature Methods, 11(11):1144–1146,
2014.

[2] U. Ijaz and C. Quince. TAXAassign v0.4, June 2009.

[3] M. Imelfort, D. Parks, B. J. Woodcroft, P. Dennis, P. Hugenholtz, and G. W.
Tyson. GroopM: an automated tool for the recovery of population genomes
from related metagenomes. PeerJ, 2:e603, 2014.

[4] D. D. Kang, J. Froula, R. Egan, and Z. Wang. MetaBAT, an efficient tool for
accurately reconstructing single genomes from complex microbial communi-
ties. PeerJ, 3:e1165, 2015.

[5] H. Kim and H. Park. Sparse non-negative matrix factorizations via alter-
nating non-negativity-constrained least squares for microarray data analysis.
Bioinformatics, 23(12):1495–1502, 2007.

[6] J. Kim, Y. He, and H. Park. Algorithms for nonnegative matrix and tensor
factorizations: A unified view based on block coordinate descent framework.
Journal of Global Optimization, 58(2):285–319, 2014.

[7] J. Kim and H. Park. Sparse nonnegative matrix factorization for clustering.
Technical Report GT-CSE-08-01, 2008.

[8] J. Kim and H. Park. Toward faster nonnegative matrix factorization: A new
algorithm and comparisons. In Proceedings of the 2008 Eighth IEEE Internation-
al Conference on Data Mining (ICDM), pages 353–362, 2008.

[9] J. Qin, R. Li, J. Raes, M. Arumugam, K. S. Burgdorf, C. Manichanh, T. Nielsen,
N. Pons, F. Levenez, T. Yamada, et al. A human gut microbial gene catalogue
established by metagenomic sequencing. Nature, 464(7285):59–65, 2010.

[10] I. Sharon, M. J. Morowitz, B. C. Thomas, E. K. Costello, D. A. Relman, and
J. F. Banfield. Time series community genomics analysis reveals rapid shifts
in bacterial species, strains, and phage during infant gut colonization. Genome
Research, 23(1):111–120, 2013.

References

Last modified: Feb 17, 2016


