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Microbes are Everywhere

http://onlinelibrary. wiley. com/doi/10. 1002/9780470015902. a0020367



What is Metagenomics?

» Metagenomics is the study of genetic material
recovered directly from environmental
samples.

» Many Organisms in one sample

» Many samples from the same environment



Who is in there?
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Generative Model of Whole Genome Sequencing
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Recover by Assembly

short reads assembled contigs
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Assembly as Huge Jigsaw Puzzle

ACGTCCTATGCGTATGCGTAATGCCACATATTGCTATGCGTAATGCGTACC

TATGCGTATGCGTAATG

read length L = 100

» Assembly is Error-prone
Sequencing error rate by technology limitation
Strain-level variation by environment complexity
Repetitive regions within and across genomes



Metagenomics Binning

» Group contigs into Operational Taxonomic Units
(OTUs).

Composition Classification/Clustering
Classification/Clustering

Kingdom

Contig o
Assembly Binni ng Phylum
1'“ ﬁ-

1|
()]
|

; Class |
/" Fragment .
Recruitment Genom.e or Order
—— Contig
—— — ——
— Coverage Family
— Profile
~— Genus
» Representative Methods: -

MetaBAT, CONCOCT, MaxBin, GroopM.



Feature-Object Matrix Representation
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Tllustration
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Problem Formulation
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Relaxation
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Drawback

» “hard clustering” to “soft clustering”

Hard Clustering

* Every object may belong to exactly one clustaz,
oo Og
O
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Soft Clustering

* The membership is fuzzy — Objects may belong to several
clusters with a fractional degree of membership in each.
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Sparsity comes to rescue

» To facilitate “hard clustering” —1like behavior

N
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arg min || X — WH| +a ) |H,;
j=1

W, H >0
Sparse Non—negative Matrix R
Factorization

Kim and Park (2008). Sparse nonnegative matrix factorization for clustering. Technical Report



Incorporating Side Information
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Optimization
» By Alternating Nonnegative Least Squares
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Block Coordinate Descent
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Experiments

» Synthetic Datasets
Species Mock Community
101 Species, 37,628 contigs, 96 Samples,

Strain Mock Community

Mixture of E. coli strains, five Bacteroides species, five
Clostridium genera, five other typical gut bacteria

9,417 contigs, 64 Samples
» Real Datasets

Sharon

11 time-series samples from premature infant gut

2,614 out of 5,579 contigs are labelled by TAXAassign
MetaHIT

264 samples from MetaHIT consortium

17,136 out of 192,673 contigs are labelled by TAXAassign



Synthetic "Species” Dataset




Synthetic "Strain” Dataset

Precision Recall ARI
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Real "Sharon” Dataset
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Real "MetaHIT" Dataset
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Speedup Ratio
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Is Side Information Useful?

» Co-alignment to the same reference genome

» Paired-end reads linkage
Minimum samples support = 2

» Ensemble of both with equal weight
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Linkage as Side Information
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Ensemble of Both
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Summary so far

» A metagenomics contigs binning framework
Utilize abundance profile and sequence composition

Embrace additional information such as co-alignment,
linkage, even customized information

Highly parallel and scalable

» What's next?



Limitation of Current Binning Approaches

» Observation:
» When samples size is small, binning is unstable
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Re-weight the Input Features

» Assumption:
Majority of features are neutral,i.e. with weight 1

Only small amount of features are either very good
( weight >1 ) or very bad ( weight <1)

» Different from Feature Screening:
Majority of features are useless (weight=0)
Only small amount of features are important ( weight=1)

» For each feature
Tested by Multimodality dip test

Maechler (2013). Package ‘diptest.



Re-weighting Needs Side Information

» Let 4; be the KNN matrix of data using heat
kernel, symmetrized

» Let 4, be the side information matrix
» Let A=A, +~4, where 7 =1tr(A]43)/(A1A41) so that

arg min- ||[A; — "}AgH?:

» Objective Func‘rion
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Objective Function

» Equivalent to a simple version of Mahalanobis
distance Learning Formulation

» Doesn't work!
» Reformulate in terms of AV

L(W) = tr(diagW)XLX " diag(W))
= || Zdiag(W)]|.
= || Z + Zdiag(AW)||>.




Final Objective Function
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Spectral Clustering after re-weighting the input
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Ongoing Direction

» Encode Relative Comparison Information into

regularization:
Contig A is closer to contig B (within the same species)
than A is to C (within the same genus)

Incorporate the phylogenetic tree

» Feature-reweighting formulation works
Not only Metagenomic Binning scenario
Not only clustering scenario
Not only untransformed feature space scenario
More powerful combined with feature screening




Summary so far

» A metagenomics contigs binning framework
Utilize abundance profile and sequence composition

Embrace additional information such as co-alignment,
linkage, even customized information

Highly parallel and scalable

» Feature-reweighting for input data enhancement
Different assumption compared o feature screening
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Questions?
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