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Saliency maps: the most popular interpretability method 
for deep neural network (DNN) models
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Existing saliency maps can be summarized into a “variations-
and-aggregation” paradigm
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Existing saliency maps suffer from following limitations

Gradient saturation Isolated importance Sensitive to perturbation
(Shrikumar et al. 2017)

❏ Strong joint evidences 
together with others.

❏ Diminishing marginal 
evidence alone.

(Singla et al. 2019)

❏ The gradient is calculated by 
fixing other features.

❏ Smoothness in input doesn’t 
hold in saliency maps.

(Ghorbani et al. 2017)

❏ Even imperceivable noises 
can drastically change the 
saliency maps.



We propose DANCE: decoy-enhanced saliency maps
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DANCE can also be decomposed into the “variations-and-
aggregation” paradigm
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Highlights:
❏ Decoys cannot be out-of-distribution by design.
❏ Decoy can be constructed efficiently by optimization.
❏ Theoretical soundness in mitigating aforementioned limitations



Two different metrics are used to quantitatively evaluate 
the performance of DANCE

Fidelity Sensitivity
(Dabkowski & Gal, 2017) (Alvarez-Melis & Jaakkola. 2018)
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DANCE achieves more coherent saliency maps both 
qualitatively and quantitatively 



DANCE is more robust to various types of adversarial 
attacks both qualitatively and quantitatively 



A control study demonstrates the necessity of both decoy 
and range-based aggregation steps in DANCE



Conclusions

❏ Empirically, DANCE  performs qualitatively and quantitatively better than existing 
methods.

❏ Theoretically, DANCE mitigates three limitations commonly suffered by existing 
methods: gradient saturation, isolated importance, and sensitivity to perturbation.

❏ We have demonstrated the wide applicability in a variety of domains.

❏ Code availability: https://bitbucket.org/noblelab/dance

https://bitbucket.org/noblelab/dance

