Heterogeneous Feature Weighting Improves Clustering
and Classification in Integrative Genomics
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Multi-omics Data are Available
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In’regra’rive Genomics are Pervasive

Metagenome Binning

- ACGTCCGAGCA - ]

DNA shapes _=

[ ] Binding Site Detection
Gene Expressmn
[ L ] = _,.J}IH? C

Precision Medicine

Copy number variation i
XG0
&l

| e P RS T |




Two Main ML Techniques
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Challenges of Integration

» curse of dimensionality
Large p vs. small n

» data heterogeneity
different omics data vary in data distribution

» unbalanced scales
uneven sizes across different types

» noise, redundancy and disagreement among data



Current Solution

» curse of dimensionality
Large p vs. small n
Solution: Feature Selection, sparsity, etc.
» data heterogeneity
different omics data vary in data distribution
Solution: Parameter estimation, etc.

» unbalanced scales
uneven sizes across different types
Solution: Normalization, scaling, etc.
» noise, redundancy and disagreement among data
Solution: cleaning, consensus analysis, etc.



Can we do better?




Feature Weighting as Preprocessing
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2. Feature Weighting according to
Implicitly Existing Knowledge

Auxiliary
Knowledge

Feature

3. Research Needs

Metagenome Binning

Binding Site Detection

~...QI_AJE]\ITSQCC?

Precision Medicine

Weighting

L]
] ,»»EJ



Illustration by Toy Example
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Auxiliary Knowledge Format
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Problem Formulation

X = [Xy; X ; Xo)
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Feature Weighting mitigate inconsistency
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Homogeneity Assumption

» Assumption:
Majority of features are neutral,i.e. with weight 1

Only small amount of features are either very good
( weight >1 ) or very bad ( weight <1)

» Different from Feature Selection:
Majority of features are useless (weight=0)

Only small amount of features are important
( weight=1)

» Let AW =W —1
satisfying 2.; AWi = 0 and AW; > —1



Minimize the Objective Function
L(AW) = tr(diag(1 + AW)X LM X T diag(1 + AW)) 4+ X || AW ||?

= || Z + Zdiag(AW)||5 + X | AW?

where LM =U0U"
7 =Urx”
A >0



Automatic Coefficient Selection

Iterate until convergence:
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Implementation Tricks

Solve the Equivalent Quadratic Programming:
LIAW) =Y " Y;(AW; + 1) + AAW;

= AW'diag(Y + \)AW +2Y T AW + const

where Y, = (X;. LM XT



Extension 1

» Sparse must-link set
under-determined, infinite solution
Add a k-nearest neighbor graph as local embedding




Extension 2
» Both must-link and cannot-link set available

L(W) = tr([diag(W) X LM X" diag(W) — ndiag(W) X L X" diag(W)] , )
= tr(diag(W) [XLMXT —nXLX"] | diag(W))

where [z], = max(0,z2)



Results

» Metagenomic Contig Binning
Features: abundance and composition profiles
Must-link: co-alignment and linkage

Dataset: simulated "SpeciesMock"” dataset and real
"MetaHIT" dataset



Precision weighted by Alignment

Metagenomic Contig Binning
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Precifion weighEed by Link§ge

Metagenomic Contig Binning
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Metagenomic Contig Binning
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Metagenomic Contig Binning
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Metagenomic Contig Binning
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Results

» RBP(RNA binding protein) Binding Site Prediction

Features: RNA tetra-mer composition, RNA secondary
structure, surrounding region types, co-binding
profiles associated with other RBPs and Gene Ontology
(GO) terms.

Must-link and cannot-link: labels in training set
Dataset: 19 distinct RBPs with one or multiple

experimental replicates, in 31 published CLIP
experiments



Area Under ROC Curve (AUC)

RBP Binding Site Prediction
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RBP Binding Site Prediction
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RBP Binding Site Prediction

U2AF2 Cobinding to hnRNPC
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RBP Binding Site Prediction
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Results

» Cancer subtyping

Features: gene expression, DNA methylation, copy
number variation, somatic mutation.

Must-link : surface receptors ER/HER2/PR status
Dataset: breast cancer from TCGA
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F-Score
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Network-based Stratification (NBS)
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Future Direction

» Deal with kernel matrix

» Deal with more general auxiliary knowledge

Relative comparison
Weighted kmer distance

» Deal with iterative weighting and screening



Questions?
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